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Chirp Transform in the Nonlinear Tracking Performance Analysis
of the LMS Adaptive Predictors
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Abstract’

A chirp transform is defined for the A-step LMS
adaptive  predictors  for linearly chirped signals
embedded in additive white Gaussian noise. By
converting the chirped signals to stationary baseband
signals, this transforin provides a different approach in
analyzing the tracking performance of the LMS adaptive
predictors. This transform also provides an approach of
analyzing the nonlinear effects of the LMS adaptive
predictor for nonstationary input signals. It is also
shown that the chirp transform can be applied to the I-
step RLS predictor with chirped input signals.

i. Introduction

The traeking behavior ol adaptive filtering algorithms
is a fundamental issue in defining their performanee in
nonstationary opcrating environments. The convergenee
hehavior of an adaptive lilter is a transient phenomenon
whercas  the tracking behavior is a  stcady-state
praperty| 1], [2] studied one-step  Least-Mcean-Square
(1.MS) adaptive predictor when the input signal eonsists
of a chirped sinusoid in Additive White Gaussian Noise
(AWGN). In [3] the performanee of the onc-step LMS
predictor is analyzed when the input is a ehirped first
order  Autoregressive  process (ARIT) embedded in
AWGN,

Traditional analysis of the LMS adaptive filter
performance, including the analysis in the ahove
referenees, is restricted to a statistical analysis of the
algorithm under a sct of independenee assumptions that
ignore the statistical dependence among successive tap-
input vectors [4]. The Mean-Squared Error (MSE) of the

' I'his work was supported by 1he NSF Industry/Universily
Cooperalive Rescarch Center on Ultra-High Speed Inlegrated Circuits
and Systems (ICAS) at the University of California, San Dicgo

LLMS adaptive lilter using these assumptions is bounded
by that of the eorresponding finite-length Wicner filter,
These well-known assumptions mask the nonlincar
effeets that arise in LMS adaptive filters. It has been
shown that it is possible for the LMS adaptive filter to
outperform the finite-length Wiener Tilter in MSE for the
cases of adaptive noise cancellation [5], adaptive
channel equalization [6], and adaptive prediction [7][8].
An error transfer funetion approaeh is also derived in [6]
to give an approximate expression for the total steady-
state MSE of the LMS adaptive channel equalizer. A
chirp transform is defined in [7]]8] to convert the
chirped AR1 signal to stationary signal and approximate
the steady-state MSE of the LMS algorithms in the
transformed domain.

In this paper, we show that the chirp transform defined
in [7][8] ean be applied to multiple-step LMS predictors
with linearly chirped signal, where the original signal
can he an arhitrary signal, not neeessarily AR1 process.
The chirp transform will eonvert the linearly ehirped
signal to its original form, and the analysis of stcady-
state MSE can be done on stationary signals. The chirp
translorm ean also be used to the exponentially weighted
Recursive-Least-Square (R1.S) algorithm.

2. Background

The adaptive predietor application eonsidered is the
adaptive recovery of narrowband signals from embedded
AWGN. Fig. | represents the lincar A-step adaptive
predietor  strueture Lo be analyzed, where

wi(ny=[w wj wi, [© are the adaptive filter
weights; x; is the input to the adaptive predictor,
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The weight update equation ol the LMS algorithm is

wE(n+ ) =w (n)+ ux (n)e, (n

where i is the step-size parameter of the adaptive

algorithm, x°(n) is the adaptive [ilter input tap-veetor at
time index n, and * denote the complex conjugate. Ior
the A-step predictor,
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The error update equation is given by

e, =x, =W (n+Dx(n+l). (3)

3. Chirp Transform for LMS Predictor

The error transfer function approach derived in [6]
provides a method to approximate the total steady-state
MSE ol the LLMS adaptive [ilter without explicitly
invoking the independence assumptions for wide-sense
stationary input signals, i.c., signals with a fixed PSD.
For a chirped input signal x;, the PSD is constantly

shilting with time, and this approach is not directly
applicable. However, by multiplying the chirped input
signal by a ncgutive frequency olfset sequence, we can

<

transform the chirped signal s& to its stationary

basehand form s, and leave the noise component 7,

unchanged in statistics since AWGN has a constant
spectral  envelope  across  all - frequencies. In  the
Tollowing, it is shown that the above transform will not
change the MSIE of the LMS adaptive predictor Tor a
chirped input signal. This allows the error transfer
function approach to be applied to rotated LMS
algorithm with the transformed input signals in order to
approximate the MSE ol the standard LLMS adaptive
predietor with chirped input signals.

3.t Equivalence of MSEs

neny?

Multiplying (3) by Q“™ 2 | and defining

s

ern =GN Z‘e,‘,' , n=0,1,2,... (3) becomes

el =xt =W (n+ X" (n+1). (4)

where w"(n+1) is the corresponding predictor weight

in the transformed domain  and  x"(n+1) s

corresponding unchirped stationary input signal veetor.
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Note that Tor the unchirped signal x! =s, +n,

o
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n=Q" Ta, n=0,12,...00 and n,

are AWGN
with the same statisties. (1) becomes

w'(n+l)= VA'[w" (n)+px"" (me], (3)
where

Vg S a2 oo, P (6)

is the ehirp rotation matrix. Since ¢, is the transformed

version of e’

n?

they have the same power, i.e.,

e

2 = .
Alel1=BQm T Pl= APl ()

Consequently, the MSE of the LMS adaptive predictor
with a chirped input signal x is equal to the MSE of a
different LMS adaptive predictor with a corresponding
stationary baseband input signal x7. The two adaptive
predictors have the same length A and step-size .
Equations (4) and (3) define the error and weight vector
updates ol the rotated [.MS adaptive predictor. ‘T'he only
dilference hetween these equations and the standard
LLMS adaptive predictor Tor stationary input signals as in
(1) and (3) is that the weight vector is rotated in
frequency by the chirp matrix V; alter each normal

LMS update, as shown in Fig. 2.

3.2 Error Transfer Function Approach for the
Rotated LMS Adaptive Predictor

Decompose  the rotated LMS adaptive predictor
weight into the sum of a time-invariant Tinite-length
Wiener  predictor  weight  and  a
misadjustment eomponent

time-varying

w' N =w,+w!(n). (8)

w" (n) is lurther decomposed as

mis
N )] o~
wo (=W (n)+ W (n), )

where Wi ()= Elw, (m)] is the mean weight
misadjustment corresponding 1o the weight fluctuation
caused by weight rotation. From (5), the mean weight

misadjustment is given by




W (1) = V(1= R (m)—(1-Vw,, (10)

mis mis

where R is the autocorrelation matrix of the stationary
input signal. When n— oo, ie., the adaptive filter
reaches steady state,

W= W (o) = ~(A+ uR) " Aw,, (an

miv nis

where A 2V, —TI. Note that in (10), it is assumed

W () to be independent of x" (n)x"" (n), and it is not

mix

n

necessary for W, (n) to be independent of x“(n). This
steady-statc  mean  weight  misadjustment  term
corresponds to the lag weight misadjustment of the LMS
adaptive predictor with a chirped input process as shown

in|3].

The weight update equation (3) can be written as

n-l
w'(n)= V. w"(0)+ /lz L ()e; . (12)
4=

At steady state, V."w"(0) can be replaced with

"
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W, +W thus the error process e, satislics the

recursive difference equation

n-1
& g (A"

=0 (13)
=" —|w,+ W ["x"(n)
Using the approximation | 6]
X" X" (n) = Mr(n—j), (14)
and
LM
S I <<, (15)

where 7" (k) is the antocorrelation of the stationary

input signal x| we have,

XV X () = M (n- ), (16)
where
Al-1
(At —)n-})
ren- a2 Ve in— . a7

[iquation (13) can thus be approximated by a standard
difference equation with constant cocfficients as

n=1
el + /t/\/IZr;’(n—j)e',' =x' —jw + W T x"(1).(18)
J=0
We can interpret the steady-state (1 — oo ) rotated LMS
adaptive predictor error ¢, as the output of a time-

invariant lincar system with transfer function F(z2)

driven by the wide-sense stationary error process

"
m

X =[w, + W 'x"(n). where #H(z) is given by

D= MR (19)

where

R(z) = ir:(/n)z' & (20)

me|

The steady-state MSE ol the rotated LMS adaptive
predictor is thus

- | SN2 o i = 5 2 07t dz
Sim = md)m JHEP =w, ()= S

Ma-1 _ M-I
. 7 - j u T — —n o o R—
where W, (z) = z w,, 2, W ()= Z W, 27 are
J=a i=A

the transfer functions of the finite-length Wicner predictor
and mecan weight misadjustment ol the rotated [.MS

adaptive predictor respectively. S (z) is the PSD of the

x

stationary input process x. .

The error transfer function approach can also be
applicd to the Normalized LMS (NLLMS) algorithm as
defined below [6]

# " H P
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Il X () |
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4. Chirp Transform for RLS Predictor
fn this scction, only the I-step RLS predictor is
studied duc to the difficulty involved in the inversion of
the autocorrelation matrix estimate. The weight and error
update cquations of the exponentially weighted RIS
adaptive algorithm is given by [4] and (3)
WO+ D = w ) +[0 )] xT (e, (24)

no

n
where @°(ny="3" A""x"(n)x*" (n) is the input signal

=0
autocorrclation matrix estimate at time s, and A is the
forgetting factor of the RLS algorithm,
In order to relate the inverse of autocorrclation
estimations [@5(m)]" ol chirped process in (24) to the

autocorrelation  estimate  [b, ()| of the haseband




stationary  process  x, =S, +#,, usc steady-state

[ '(m]'=0-2)R"', and definc a

signal dircction matrix

approximation
1 2 _pE
D=diag{Q W 2,Q°W 2., QYWY 2} (25)
Then at steady-state,
[ ()] = VD [@ ()] DTV (26)
where V=V, |,_,.(24) becomes
W +1) =w () + VDD ()] D VX (n)el
ft can be simplified to

w'in+l)= V'[w” (M) +V [D (1] ! V‘x"'(n)e:] (27)

The MSE of RLS on chirped process x, can be
approximated by the MSE of RLS on a correspondence

stationary baschand process x, with an adaplive lilter of

the same length A7, forgetting lactor A. ‘fhe
dilTerences of cquations (4) and (27) with the standard
RLS algorithm for stationary signal (3) and (24) is that
the weight vector is rotated by chirp matrix V' after
cach update and the inverse of autocorrelation matrix
estimation is pre-rotated hy V and post-rotated by V'in
each update. The rotations will give extra MSI in excess
of the normal MSIE of standard RLS algorithms.

5. Simulations

Several simufations have been perlormed to show the
equivalence of MSEs using chirp transform for A-step
ILMS predictor and 1-step RLS predictor using the
chirped AR signals, and the transfer function approach
in approximating the MSLE ol the LMS predictor with
chirped AR1 signals.

Fip. 3 is a plot of MSEs of Wiener predictor, standard
LLMS with chirped AR input signal, and rotated 1L.MS
with corresponding stationary input signaf. The signal is
pole location is at @ = 0.9, input signal SNR=5dD, filter
length M =10, the prediction distance is 5, the chirp
rate is 1 = Se—4. It shows from the Fig. that the MSEs

are essentially the same for standard LMS on chirped
input signal and rotated 1LMS on stationary input signal.

Iig. 4 plots MSEs ol 40-stecp NLMS predictors as a
lunction ol adaptation constant, with SNR = 20dB,
M=25, a = 0.99, chirp rate y =5me—4. In this plot, the
NLLMS adaptive predictors are used instead of the
standard LMS adaptive predictors because the NLMS
algorithm is stable for rclatively larger values of the

adaptive filter step-size (0O< p<2) [6], where the
nonlinear clleets of adaptive afgorithm are most
significant. The most significant Teature of the plot is
that the LMS predictors can have smaller MSEs than
those of the finite-length Wiener predictor. This is due (o
the fact that adaptive filters arc nonlincar filters. The
results [rom transfer function approach fit well to the
simulation results at the region where the nonlinear
cifects are most signilicant. ‘fhe discrepancy of the
MSEs predicted by transfer lunction approach with
simulation results at smaller adaptive filter step-size is
caused by approximations used in (13), where the
[requency of the input signal vector is approximated by
that of the center element in (hat vector.

Fig. 5 plots MSEs of Wicner predictor, standard R1LS
with chirped AR input signal, and rotated RS with
stationary input signal. The signal pole location is at
a =09, fifter length M =10, the prediction distance is
1, chirp rate is 1 =5e—4. 1t can be seen Irom the plot

that the MSEs of standard RLS on chirped input signal
arc very close to the MSIis of rotated LMS on stationary
input signal.

6. Conclnsions

A transform is defined to convert the chirped input
signafls to haschand stationary input signals, thus
provides a different approach in analyzing the tracking
performance of the 1LMS adaptive predictors. This
transform makes it possible to apply the error transfer
function approach to chirped input signals and compute
the total steady-statc MSE of the LMS adaptive
predictors. It shows that for narrowband input signafs,
whether  stationary  or  nonstationary, embedded in
AWGN, the LMS adaptive predictor may outperform the
finite-fength Wicner predictor in steady-state MS1:. The
sume  chirp transform can be applied to the I-stp
exponentially weighted RLS  predictor  with  chirped
input signals.
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Figure 1. LMS/RLS A-step predictor structure.

Xn .\'-I: § I +’S“- E:
I L. ..l i .
: =
IX .\I | o |
I e -
L2z 2" |2 i
N XA A
() () (|
— L [ ‘ |'
| |
V) Z

I | LMS |

Figure 2. Rotated LMS A-step predictor structure.
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Figure 3. MSEs of Wicner predictor, standard 1LMS with
chirped AR1 input signal, and rotated LMS with
stationary input signal. The signal pole location is at
a=0.9, filter length M =10, the prediction distance is
5, chirp rate is ¥ = 5e — 4.
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Figure 4. MSEs of 40-step NLLMS predictors as a
function of adaptation constant, with SNR = 20dB,
M=25a=0.99, chirp rate y =35mwe—4,
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Figure 5. MSEs ol Wiener predietor, standard RLS with
chirped AR1 input signal, and rotated RLS with
stationary input signal. The signal pole location is at
a=0.9, lilter length M =10, the prediction distance is
I, chirp ratc is y = 5¢ — 4.




